光学材料热光系数的精确 测量——"热光系数仪"

刘海清 金德运 黄国松 (中国科学院上海光学精密机械研究所)

提 要

本文介绍用于光学材料系数精确测量的"热光系数仪"。 该仪器采用两种干涉仪组合、微机控制和数 据采集处理等设计方案,实现了高精度测量。低温区热膨胀系数 α、折射率温度系数 β 热光系数 W 的测 量精度可达 ±3×10⁻⁷ °C⁻¹。

关键词: 热光系数, 热光应力系数, 双稳开关回路, 等厚干涉, 马赫-陈德尔干涉术。

一、前 言

光学材料性质的热变化使光学系统产生热像差,热像差对光束波面产生干扰,影响了光 信息传递的质量,在激光系统中激活元件在光泵过程中形成的温度梯度,导致激活元件出现 光学畸变,使激光束波面发生畸变,降低了激光器质量。研究测量这些与热相关的 α、β、W 等系数的仪器,其目的是改进和指导对光学材料的研制工艺和生产。这对于提高精密光学 仪器和激光器的质量是有意义的。我们选用合理的设计方案和先进的技术措施,使仪器实 现了多功能的高精度测量,其主要技术指标为测量温度范围:室温~200°C;测量精度:±3× 10⁻⁷°C⁻¹(在 20°C~120°C 温度范围内)。

二、仪器原理

把光学材料样品置于干涉仪光路中,样品两端面形成的等厚干涉和马赫-陈德尔干涉, 在均匀温度场中的热膨胀系数 a,折射率温度系数 β 和热光系数 W 分别为^{LLL}

$$\alpha = (m_2 - 2m_1)\lambda/2L\Delta T, \qquad (1)$$

$$\beta = [m_2 + n(2m_1 - m_2)]\lambda/2L\Delta T, \qquad (2)$$

$$W = m_1 \lambda / L \Delta T, \tag{3}$$

式中 m1、m2 分别为干涉条纹变化数目; 4T 为温度变化范围; λ 为探测光波长、L 为被测样 品长度, n 为被测样品折射率。

对非均匀场,棒状或片状样品引入应力热光系数 P 和热应力双折射系数 Q 来描述光 学元件的折射率变化^{23,33}。通常利用空心圆棒样品建立轴对称恒定的温度场,其径向和切向 偏振光测量系数 P、Q 为¹¹¹

收稿日期: 1986年6月16日; 收到修改稿日期: 1987年1月14日

$$P = \frac{m_r + m_\theta}{2L\Delta T_{ab}} \lambda - \beta, \tag{4}$$

$$Q = \frac{m_r - m_\theta}{2L \Delta T_{ab}},\tag{5}$$

式中 m_r, m_e 分别为径向和切向偏振光的干涉条纹变化数目; 4T_{eb} 为圆棒状样品内外表 面的温差。

三、仪器的基本结构

仪器结构如图 1 所示, 光源 S(或孔 O 进来的外接激光光源)发出的光束, 经扩束望远 镜后使其口径扩大, (λ/4) 波片 F₁ 把光束变成圆偏振光, 通过偏振片 F₂ 获得定向偏振光 (可变光阑 L₁ 变换光束口径), 再经平面反射镜转折进入马赫-陈德尔干涉仪 P₁、 P₂、 M₂、 M₃, 被测样品 Z 和补偿板 B 分别放入干涉仪的两路中, 两束光在 P₂ 处相干, 干涉条纹经 平面镜 M₄ 转折在观察窗 E 进行对光观察; 样品 Z 的两端反射光形成等厚干涉。 此两种 干涉条纹分别经小孔光阑 L₂、L₃ 进入微机 TRS-80II 进行数据处理, 同时 TRS-80II 机对 样品的温度变化进行自动控制, 最后测量结果通过荧光屏显示或打印机输出。

Fig. 1 Schematic diagram of system

为保证干涉条纹质量,选用马赫-陈德尔干涉仪的两个分光镜 P1、P2 为楔形,目的使非

分光面的反射光束不能进入干涉光路中,并加置光阑, 以保证干涉条纹的清晰度。在干涉仪的参考光路放入 补偿片 B,可调节参考光的强度,使干涉条纹具有好的 对比度。采用减少热传导和防止热交换措施,以尽量 减少影响干涉条纹抖动的因素。同时利用计算机软件, 识别真正干涉条纹变化,排除由于振动抖动引进的误 差。

为了保证样品的均匀升温,采用了轴对称电热丝

加热室和干冰致冷室,并用热容量较大的小马福作为接触升温和致冷,样品室内以炉中心为 坐标原点的轴向温度分布如图2所示,(样品室轴向尺寸为13cm),温度精度为±0.5℃。 用四个自由度的精密工作台,实现精确测量。

仪器采用 TRS-80 II 型计算机实现了温控、数据采集和处理,其原理框如图 3 所示。

Fig. 3 Block diagram of instrument control and data collection

(1) TRS-80II 微型机: 在完成热光系数仪光路调整后, 启动系数仪与 TRS-80II 机, 输入本次测量参数、温控曲线后, 开始控制室温, 计数干涉条纹, 计算热光系数, 实时显示运行参数、测试结果后, 屏幕显示或打印机输出测试结果。

(2) A/D、D/A 接口极:当样品室温度按给定的温控曲线均匀升、降温时,样品的马赫-陈德尔干涉条纹与端面干涉条纹数目的变化(*M*₁、*M*₂),经光电转换为电信号馈至直流放大 器,放大得到 0~5 V 的电压模拟信号,进行 A/D 转换后,得到与条纹明暗强度相对应的数 字, TRS-80 II 机立即显示条纹强度与数目的变化,从而实现了干涉条纹的自动采集与处 理。

(3)外部设备:具有自动补偿热电偶冷端温度差的温度变送器,将输入的热电偶毫伏值 信号通过调制——放大——解调成线性变化的毫安值。

温度执行机构为可控硅控制器,样品室采用单相交流 220 V 加热。改变加热丝上的电压,达到调节温度的目的。

打印机为机算机输出设备,根据测试者需要,可将测试结果通过它打印输出。

四、仪器测试与误差分析

利用该仪器测量3部分光学玻璃和激光玻璃的五个系数,其结果如表1、表2所示*。

*表中测量值是10次测量的平均值。

glass	temperature	a	β	W	glass	temperature	a	β	W
QK3	50°~100°C	9.17	-1.65	2.84		-78°~20°€	7.80	1.50	5.60
						20°~50°C	7.60	3.90	8.40
	-78"~20"0	7.00	-0.10	3.50	\mathbf{F}_2	50°~100°C	7.60	5.10	9.60
	20°~50°C	7.20	2.20	5.30		100°∼150°C	7.60	5.90	10.50
K9	50°~100°C	7.40	2.40	5.90		$150^{\circ} \sim 200^{\circ} O$	7.60	6,80	11.30
	100°~150°O	7.60	2.70	6.40			7.00	2 00	6 20
	150°~200°C	7.90	2.90	6.90			7.00	4.00	0.00
<u> </u>						20.~50.0	7.20	4 80	9.20
	−78°~20°C	7.00	-0.10	3.70	±'₅	50°~100°C	7.50	5.20	9.80
BaK ₂	20°~50°O	8.40	0.25	4.70	ļ	100°~150°C	7.50	6.20	10,90
	50°∼100°O	8.50	0.83	5.40		150°∼200°C	7.50	7.10	11.80
	100°∼150°C	8.60	1.48	6.10		20°~50°C	10.50	-5.00	0,80
	150°~200°C	8.80	2.01	6.80		50°~100°C	10.70	-4.40	1.40
	·				N ₂₁	100°~150°C	10.90	-3.80	2.10
	−78°~20°O	6,10	1.20	4.60		150°~200°C	11.10	3.40	2 ,25
	20°∼50°C	6.80	2.87	6.85			<u> </u>	R1 00	
BaK7	50°∼100°C	6.90	3.20	7.10	PbMoO₄	20°~50°C	10.00	-71.00	- 59.20
	100°~150°C	7.20	4.03	8.14				-40.70	-29.10
	150°~200°C	7.40	4.39	8.62	LaK ₂	50°~100°C	7.40	0.70	5.80
	−78°~20°C	6.00	0.60	4.20	QF1	50°~100°C	7.66	2.00	6.21
	20°∼50°C	6.20	2.00	5.60	KF3	50°~100°C	9.50	-2.80	2,20
ZK6	50°∼100°C	6.30	2.30	6,20			<u> </u>		
	100°~150°C	6.50	2.90	6.90	BaF_7	50°~100°C	7.69	4.92	9.61
	150°∼200°C	6.70	2.30	7.40	$ZBaF_4$	50°~100°C	6.49	8.52	12.82

Table 1 Measured results (10^{-6} °C⁻¹) of coefficients of α , β and W of optical glasses

Table 2	P, Q coefficients	(10-6°C-1) of so	me optical glasses
---------	-------------------	------------------	--------------------

glass	P	Q	glass	Р	ନ
BaK ₁	4.3	1.0	NO4	2.7	0.8
K9	4.0	1.0	NO_6	4.9	1.0
QK_2	2.0	0,5	NO7	4.0	1.1
ZF_6	9.7	0.4	NO8	5.5	1.0
NO1	5.0	0.8	NOg	4.2	1.0
NO_2	4.8	1.0	NO10	4.6	1.0
NO_3	4.1	0.9	NO22	6.1	0.5

根据仪器的测量原理公式可知,误差来自温度控制误差,干涉条纹计数误差,样品长度 测量误差,激光波长漂移和样品调节误差等。其中对 100 mm 样品长度测量的相对误差为 10⁻⁴;激光波长漂移引进的相对误差为 10⁻⁶;样品调节误差,在棒状样品端面反射光斑在 D₂ 接收器中心偏离 ±2 mm 情况下,光线在样品内产生的程差为 n *A*d = 6.5×10⁻⁴,引进的相 对误差在 4×10⁻⁶ 左右。上述各种误差的总和约为 2×10⁻⁴,相对于温控误差和条纹计数 误差要小得多。因此,整个仪器的误差来源主要取决于温度和条纹计数,各系数的相对误 差为

7卷

$$\frac{\Delta \alpha}{\alpha} = \left| \frac{\Delta m_1}{m_2 - 2m_1} \right| + 2 \left| \frac{\Delta m_2}{m_2 - 2m_1} + \left| \frac{\Delta T}{T} \right|, \tag{6}$$

$$\frac{-\Delta\beta}{\beta} = (1-n) \left| \frac{-\Delta m_2}{D} \right| + 2n \left| \frac{-\Delta m_1}{D} \right| + \left| \frac{-\Delta T}{T} \right|, \tag{7}$$

$$\frac{\Delta W}{W} = \left| \frac{\Delta m_1}{m_1} \right| + \left| \frac{\Delta T}{T} \right|,\tag{8}$$

$$\frac{\Delta P}{P} = \left| \frac{\Delta m_r}{m_r + m_{\theta}} \right| + \left| \frac{\Delta m_{\theta}}{m_r + m_{\theta}} \right| + \left| \frac{\Delta T}{T} \right| + \left| \frac{\Delta \beta}{\beta} \right|, \tag{9}$$

$$\frac{\Delta Q}{Q} = \left| \frac{\Delta m_r}{m_r - m_\theta} \right| + \left| \frac{\Delta m_\theta}{m_r - m_\theta} \right| + \left| \frac{\Delta T}{T} \right|, \tag{10}$$

$$D = m_2 + n(2m_1 - m_2)_0$$

本仪器温度误差为 ±0.5°C,干涉条纹测量误差为 ±0.5条纹。根据上述分析,表3 给 出了几种光学玻璃在 50°~100°C 和 20°~120°C 温度变化范围内各 α,β,W 系数的测量误 差。表中数据说明 α,β,W 的测量误差范围在 ±3×10⁻⁷°C⁻¹ 以内,即仪器在此温度范围的 测量精度为 ±3×10⁻⁷°C⁻¹,利用同样方法求得 P,Q 的测量误差为 4×10⁻⁷°C⁻¹。

glass	temper at ure	n	<i>m</i> 1	m_2	Δα	Δβ	ΔW
K ₉	50°~100°C	1.51467	46.0	208.5	± 0.20	$\pm^{0.17}$	±0.15
BaK ₂	50°~100°C	1.53808	44.0	227.0	± 0.18	± 0.10	± 0.14
BaK ₇	50°~100°O	1.56676	61.5	241.0	± 0.20	± 0.16	±0.17
\mathbf{ZK}_{6}	50°∼100°C	1.61200	54.5	220.0	± 0.17	± 0.13	± 0.15
\mathbf{F}_2	50°~100°C	1.60955	76.5	273.0	± 0.20	±0.20	± 0.20
\mathbf{F}_{5}	50°~100°C	1.62080	79.0	278.0	± 0.20	± 0.19	± 0.21
\mathbf{ZF}_{6}	50°~100°O	1.74992	112.5	356.0	± 0.21	±0.20	± 0.27
N_{24}	50°~100°C	1.54000	11.7	198.0	± 0.25	±0.18	±0.08
QK3	20°∼ 120°C	1.48599	36.0	296.0	± 0.15	±0.10	±0.07
LaK_2	20°~120°C	1.68945	74.0	336.0	± 0.13	±0.07	± 0.10
KF3	20°~120°C	1.52414	27.5	294.0	± 0.15	±0.10	±0.06
BaF_7	20°~120°C	1.61098	121.5	437,5	± 0.14	±0.12	± 0.14
$ZBaF_4$	20°∼ 120°C	1.66045	156.0	470.0	± 0.13	±0.16	±0.17

Table 3 Errors (10⁻⁶°C⁻¹) of α , β and W at $\lambda = 6328$ Å

仪器测量值与真值(理论值)之间的差异,不是衡量仪器性能的唯一指标;仪器测量值的 重复性是衡量仪器的另一重要指标。多次测量的平均值与各次测量值之间的偏差是描述这 一指标的参数。表4列出了 F₅和 BaK₇玻璃分别重复 10 次测量的结果。表中列出了最 大偏差,均方根偏差和相对偏差。数据表明,系统最大偏差约为 ±1.2×10⁻⁷℃⁻¹,均方根 偏差为 ±6×10⁻⁸℃⁻¹,相对偏差为 1~2%。

*

Number		\mathbf{F}_{5}		BaK7			
	a	β	W	a	β	1V	
1	7.42	5.24	9.85	6.92	3.15	7.07	
2	7.54	5.16	9.85	7.01	3.04	7.01	
3	7.48	5.20	9.85	6.83	3.26	7.13	
4	7.54	5.16	9.85	6.98	3.05	7.01	
5	7.54	5.16	9.85	6.89	3.11	7.01	
6	7.48	5.20	9.85	6.86	3. 19	7.07	
7	7.54	5.16	9.85	6.92	3.15	7.07	
8	7.51	5.12	9.78	6.92	3.15	7.07	
9	7.58	5.08	9.78	6.89	3.11	/ 7.07	
10	7.51	. 5.16	9.85	6.92	3.15	7.07	
mean value	7.51	5.16	9.84	6.91	3.14	7.03	
max. deviation	0.09	0.08	0.06	0.10	0.12	0.07	
standard deviation	0.05	0.04	0.03	0.05	0.06	0.04	
relative error	0.67%	0.76%	0.30%	0.72%	1.91%	0.57%	

Table 4 Accuracy range (10⁻⁶°C⁻¹) measurement instrument (50°~100°C)

五、讨 论

热光系数仪可用偏振光或自然光测量各向同性材料的 α 、 β 、W 系数,但在测量各向异性晶体材料时,必须采用偏振光,分别测量 o 光和 e 光的六个系数 α_{\circ} 、 α_{\circ} 、 β_{\circ} 、 W_{\circ} 、 W_{e} 对 钼酸铝晶体测量表明,与计算值的结果完全相符。由于干涉测量误差小。对膨胀系数测量 最大误差约为 $\pm 2 \times 10^{-7} \, ^{\circ}\mathrm{C}^{-1}$,最大偏差为 $\pm 1 \times 10^{-7} \, ^{\circ}\mathrm{C}^{-1}$,方均根偏差为 $\pm 5 \times 10^{-8} \, ^{\circ}\mathrm{C}^{-1}$,所以该仪器也是微膨胀系数测量的有效工具。但因干涉仪材料是金属,为了避免环境温度 变化的影响,要求环境温度起伏在 $\pm 1^{\circ}\mathrm{C}$ 以内。

参考文献

- [1] 黄国松等; 《光学学报》, 1982, 2, No. 4 (Jul), 380~284。
- [2] 激光玻璃检验组; 《物理学报》, 1978, 27, No. 1 (Jan), 22~42。
- [3] А. А. Мак; ОМП, 1971, 38, No. 9 (Сен), 42~53.
- [4] Ю. А. Анаиьев; Ж П С, 1970, 12, No. 4 (Апр), 668~684.
- [5] A. H. 查哈里也夫斯基; 《干涉仪》, (科学出版社, 1966), 47~76,

Precision measurment of thermo-optic coefficients of optical materials——A thermo-optic coefficient measuring instrument

LIU HAIQING, JIN DEVUN AND HUANG GOUSONG (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 6 June 1986; revised 14 January 1987)

Abstract

This paper decribles a kind of thermo-optic coefficients measuring instrument which can be used for exact measurement of five coefficients of optical materials.

A new design shich combining two kinds of interferometers, computer control and data processing and adoped, resulting in a high-precision measurement.

An accuracy of $\pm 3 \times 10^{-7}$ °C⁻¹ has been achieved in measuring the thermal expansion coefficient α in a low temperature region, temperature coefficient of refractive index β and thermo-optic coefficient ω .

Key Words: thermo-optic coefficient; stress thermo-optic coefficient; bistable onoff circult; interference of equal thickness; Mach-Zehnder interferometry.

1.-